Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 225
Filtrar
1.
PLoS Pathog ; 20(2): e1011981, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38354122

RESUMO

Lysosomes are acidic organelles that mediate the degradation and recycling of cellular waste materials. Damage to lysosomes can cause lysosomal membrane permeabilization (LMP) and trigger different types of cell death, including apoptosis. Newcastle disease virus (NDV) can naturally infect most birds. Additionally, it serves as a promising oncolytic virus known for its effective infection of tumor cells and induction of intensive apoptotic responses. However, the involvement of lysosomes in NDV-induced apoptosis remains poorly understood. Here, we demonstrate that NDV infection profoundly triggers LMP, leading to the translocation of cathepsin B and D and subsequent mitochondria-dependent apoptosis in various tumor and avian cells. Notably, the released cathepsin B and D exacerbate NDV-induced LMP by inducing the generation of reactive oxygen species. Additionally, we uncover that the viral Hemagglutinin neuraminidase (HN) protein induces the deglycosylation and degradation of lysosome-associated membrane protein 1 (LAMP1) and LAMP2 dependent on its sialidase activity, which finally contributes to NDV-induced LMP and cellular apoptosis. Overall, our findings elucidate the role of LMP in NDV-induced cell apoptosis and provide novel insights into the function of HN during NDV-induced LMP, which provide innovative approaches for the development of NDV-based oncolytic agents.


Assuntos
Proteína HN , Vírus da Doença de Newcastle , Animais , Vírus da Doença de Newcastle/metabolismo , Proteína HN/metabolismo , Catepsina B , Apoptose , Lisossomos/metabolismo
2.
J Virol ; 98(3): e0018224, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38411947

RESUMO

Porcine epidemic diarrhea virus (PEDV) results in PED, which is an infectious intestinal disease with the representative features of diarrhea, vomiting, and dehydration. PEDV infects neonatal piglets, causing high mortality rates. Therefore, elucidating the interaction between the virus and host in preventing and controlling PEDV infection is of immense significance. We found a new antiviral function of the host protein, RNA-binding motif protein 14 (RBM14), which can inhibit PEDV replication via the activation of autophagy and interferon (IFN) signal pathways. We found that RBM14 can recruit cargo receptor p62 to degrade PEDV nucleocapsid (N) protein through the RBM14-p62-autophagosome pathway. Furthermore, RBM14 can also improve the antiviral ability of the hosts through interacting with mitochondrial antiviral signaling protein to induce IFN expression. These results highlight the novel mechanism underlying RBM14-induced viral restriction. This mechanism leads to the degradation of viral N protein via the autophagy pathway and upregulates IFN for inhibiting PEDV replication; thus, offering new ways for preventing and controlling PED.IMPORTANCEPorcine epidemic diarrhea virus (PEDV) is a vital reason for diarrhea in neonatal piglets, which causes high morbidity and mortality rates. There is currently no effective vaccine or drug to treat and prevent infection with the PEDV. During virus infection, the host inhibits virus replication through various antiviral factors, and at the same time, the virus antagonizes the host's antiviral reaction through its own encoded protein, thus completing the process of virus replication. Our study has revealed that the expression of RNA-binding motif protein 14 (RBM14) was downregulated in PEDV infection. We found that RBM14 can recruit cargo receptor p62 to degrade PEDV N protein via the RBM14-p62-autophagosome pathway and interacted with mitochondrial antiviral signaling protein and TRAF3 to activate the interferon signal pathway, resulting in the inhibition of PEDV replication.


Assuntos
Infecções por Coronavirus , Interferons , Vírus da Diarreia Epidêmica Suína , Doenças dos Suínos , Animais , Autofagia , Linhagem Celular , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/metabolismo , Infecções por Coronavirus/veterinária , Diarreia/veterinária , Interferons/metabolismo , Proteínas do Nucleocapsídeo/metabolismo , Vírus da Diarreia Epidêmica Suína/fisiologia , Suínos , Doenças dos Suínos/imunologia , Doenças dos Suínos/metabolismo , Replicação Viral
4.
PLoS Pathog ; 20(2): e1012027, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38377149

RESUMO

Newcastle disease virus (NDV) has been extensively studied as a promising oncolytic virus for killing tumor cells in vitro and in vivo in clinical trials. However, the viral components that regulate the oncolytic activity of NDV remain incompletely understood. In this study, we systematically compared the replication ability of different NDV genotypes in various tumor cells and identified NP protein determines the oncolytic activity of NDV. On the one hand, NDV strains with phenylalanine (F) at the 450th amino acid position of the NP protein (450th-F-NP) exhibit a loss of oncolytic activity. This phenotype is predominantly associated with genotype VII NDVs. In contrast, the NP protein with a leucine amino acid at this site in other genotypes (450th-L-NP) can facilitate the loading of viral mRNA onto ribosomes more effectively than 450th-F-NP. On the other hand, the NP protein from NDV strains that exhibit strong oncogenicity interacts with eIF4A1 within its 366-489 amino acid region, leading to the inhibition of cellular mRNA translation with a complex 5' UTR structure. Our study provide mechanistic insights into how highly oncolytic NDV strains selectively promote the translation of viral mRNA and will also facilitate the screening of oncolytic strains for oncolytic therapy.


Assuntos
Vírus da Doença de Newcastle , Vírus Oncolíticos , Animais , Vírus da Doença de Newcastle/genética , Aminoácidos , Leucina , Vírus Oncolíticos/genética , RNA Mensageiro/genética , Biossíntese de Proteínas
5.
Virulence ; 15(1): 2299182, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38193514

RESUMO

Newcastle disease virus (NDV) typically induces severe illness in poultry and results in significant economic losses for the worldwide poultry sector. NDV, an RNA virus with a single-stranded negative-sense genome, is susceptible to mutation and immune evasion during viral transmission, thus imposing enormous challenges to avian health and poultry production. NDV is composed of six structural proteins and two nonstructural proteins that exert pivotal roles in viral infection and antiviral responses by interacting with host proteins. Nowadays, there is a particular focus on the mechanisms of virus-host protein interactions in NDV research, yet a comprehensive overview of such research is still lacking. Herein, we briefly summarize the mechanisms regarding the effects of virus-host protein interaction on viral infection, pathogenesis, and host immune responses. This review can not only enhance the present comprehension of the mechanism underlying NDV and host interplay, but also furnish a point of reference for the advancement of antiviral measures.


Assuntos
Interações entre Hospedeiro e Microrganismos , Vírus da Doença de Newcastle , Viroses , Animais , Antivirais , Evasão da Resposta Imune , Vírus da Doença de Newcastle/metabolismo , Viroses/metabolismo
6.
Commun Biol ; 7(1): 114, 2024 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-38242964

RESUMO

The naturally occurring bisexual cone of gymnosperms has long been considered a possible intermediate stage in the origin of flowers, but the mechanisms governing bisexual cone formation remain largely elusive. Here, we employed transcriptomic and DNA methylomic analyses, together with hormone measurement, to investigate the molecular mechanisms underlying bisexual cone development in the conifer Picea crassifolia. Our study reveals a "bisexual" expression profile in bisexual cones, especially in expression patterns of B-class, C-class and LEAFY genes, supporting the out of male model. GGM7 could be essential for initiating bisexual cones. DNA methylation reconfiguration in bisexual cones affects the expression of key genes in cone development, including PcDAL12, PcDAL10, PcNEEDLY, and PcHDG5. Auxin likely plays an important role in the development of female structures of bisexual cones. This study unveils the potential mechanisms responsible for bisexual cone formation in conifers and may shed light on the evolution of bisexuality.


Assuntos
Picea , Minorias Sexuais e de Gênero , Traqueófitas , Humanos , Filogenia , Bissexualidade , Picea/genética , Picea/metabolismo , Metilação de DNA , Traqueófitas/genética
7.
Virology ; 589: 109926, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37952465

RESUMO

H9N2 subtype avian influenza virus (AIV) can transmit by direct as well as airborne contacts. It has been widespread in poultry and continued to contribute to zoonotic spillover events by providing its six internal genes for the reassortment of novel influenza viruses (eg, H7N9) that infect poultry and humans. Compared to H7N9, H9N2 virus displays an efficient airborne transmissibility in poultry, but the mechanisms of transmission difference have been insufficiently studied. The Hemagglutinin (HA) and viral polymerase acidic protein (PA) have been implicated in the airborne transmission of influenza A viruses. Accordingly, we generated the reassortant viruses of circulating airborne transmissible H9N2 and non-airborne transmissible H7N9 viruses carrying HA and/or PA gene. The introduction of the PA gene from H7N9 into the genome of H9N2 virus resulted in a reduction in airborne transmission among chickens, while the isolated introduction of the HA gene segment completely eliminated airborne transmission among chickens. We further showed that introduction of HA gene of non-transmissible H7N9 did not influence the HA/NA balance of H9N2 virus, but increased the threshold for membrane fusion and decreased the acid stability. Thus, our results indicate that HA protein plays a key role in replication, stability, and airborne transmission of the H9N2 subtype AIV.


Assuntos
Subtipo H7N9 do Vírus da Influenza A , Vírus da Influenza A Subtipo H9N2 , Influenza Aviária , Influenza Humana , Humanos , Animais , Galinhas , Hemaglutininas , Subtipo H7N9 do Vírus da Influenza A/genética , Aerossóis e Gotículas Respiratórios , Aves Domésticas , Proteínas Virais/genética , Proteínas Virais/metabolismo , Vírus Reordenados/genética , Vírus Reordenados/metabolismo , Filogenia
8.
Virol Sin ; 39(1): 97-112, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38103645

RESUMO

Influenza A virus (IAV) continues to pose a pandemic threat to public health, resulting a high mortality rate annually and during pandemic years. Posttranslational modification of viral protein plays a substantial role in regulating IAV infection. Here, based on immunoprecipitation (IP)-based mass spectrometry (MS) and purified virus-coupled MS, a total of 89 phosphorylation sites distributed among 10 encoded viral proteins of IAV were identified, including 60 novel phosphorylation sites. Additionally, for the first time, we provide evidence that PB2 can also be acetylated at site K187. Notably, the PB2 S181 phosphorylation site was consistently identified in both IP-based MS and purified virus-based MS. Both S181 and K187 are exposed on the surface of the PB2 protein and are highly conserved in various IAV strains, suggesting their fundamental importance in the IAV life cycle. Bioinformatic analysis results demonstrated that S181E/A and K187Q/R mimic mutations do not significantly alter the PB2 protein structure. While continuous phosphorylation mimicked by the PB2 S181E mutation substantially decreases viral fitness in mice, PB2 K187Q mimetic acetylation slightly enhances viral virulence in mice. Mechanistically, PB2 S181E substantially impairs viral polymerase activity and viral replication, remarkably dampens protein stability and nuclear accumulation of PB2, and significantly weakens IAV-induced inflammatory responses. Therefore, our study further enriches the database of phosphorylation and acetylation sites of influenza viral proteins, laying a foundation for subsequent mechanistic studies. Meanwhile, the unraveled antiviral effect of PB2 S181E mimetic phosphorylation may provide a new target for the subsequent study of antiviral drugs.


Assuntos
Virus da Influenza A Subtipo H5N1 , Vírus da Influenza A , Influenza Humana , Animais , Camundongos , Humanos , Virus da Influenza A Subtipo H5N1/genética , Virulência , Fosforilação , Vírus da Influenza A/genética , Proteínas Virais/metabolismo , Replicação Viral/genética
9.
Animals (Basel) ; 13(23)2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-38067031

RESUMO

Avian influenza viruses can cross species barriers and adapt to mammals. The H7N9 subtype AIV that emerged in China in 2013 caused 1568 human infections, with a mortality rate of nearly 40%. We conducted a retrospective analysis of H7N9 viruses that were isolated in live poultry markets in 2013. We found that two avian-origin H7N9 isolates, A/chicken/Eastern China/JTC4/2013 and A/chicken/Eastern China/JTC11/2013, have a similar genetic background but exhibit different pathogenicity in mice. Whole-genome alignment of the two H7N9 viruses was carried out, and only six amino acid differences mapped in five genes, including the well-known virulence molecular marker PB2-E627K. Our retrospective analysis highlighted the importance of monitoring the adaptive mutations in avian influenza viruses with zoonotic potential.

10.
Vet Microbiol ; 287: 109910, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38016409

RESUMO

Low pathogenic (LP) H7N9 avian influenza virus (AIV) emerged in 2013 and had spread widely over several months in China, experienced a noteworthy reduction in isolation rate in poultry and human since 2017. Here, we examined the transmission of H7N9 viruses to better understand viral spread and dissemination mechanisms. Three out of four viruses (2013-2016) could transmit in chickens through direct contact, and airborne transmission was confirmed in the JT157 (2016) virus. However, we did not detect the transmission of the two 2017 viruses, WF69 and AH395, through either direct or airborne exposure. Molecular analysis of genome sequence of two viruses identified eleven mutations located in viral proteins (except for matrix protein), such as PA (K362R and S364N) and HA (D167N, H7 numbering), etc. We explored the genetic determinants that contributed to the difference in transmissibility of the viruses in chickens by generating a series of reassortants in the JT157 background. We found that the replacement of HA gene in JT157 by that of WF69 abrogated the airborne transmission in recipient chickens, whereas the combination of HA and PA replacement led to the loss of airborne and direct contact transmission. Failure with contact transmission of the viruses has been associated with the emergence of the mutations D167N in HA and K362R and S364N in PA. Furthermore, the HA D167N mutation significantly reduced viral attachment to chicken lung and trachea tissues, while mutations K362R and S364N in PA reduced the nuclear transport efficiency and the PA protein expression levels in both cytoplasm and nucleus of CEF cells. The D167N substitution in HA reduced the H7N9 viral acid stability and avian-like receptor binding, while enhanced human-like receptor binding. Further analysis revealed these mutants grew poorly in vitro and in vivo. To conclude, H7N9 AIVs that contain mutations in the HA and PA protein reduced the viral transmissibility in chicken, and may pose a reduced threat for poultry but remain a heightened public health risk.


Assuntos
Subtipo H7N9 do Vírus da Influenza A , Influenza Aviária , Influenza Humana , Animais , Humanos , Galinhas , Subtipo H7N9 do Vírus da Influenza A/genética , Mutação , Aves Domésticas
11.
Vet Res ; 54(1): 92, 2023 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-37848995

RESUMO

The haemagglutinin-neuraminidase (HN) protein plays a crucial role in the infectivity and virulence of Newcastle disease virus (NDV). In a previous study, the mutant HN protein was identified as a crucial virulence factor for the velogenic variant NDV strain JS/7/05/Ch, which evolved from the prototypic vaccine strain Mukteswar. Furthermore, macrophages are the main susceptible target cells of NDV. However, the possible involvement of cellular molecules in viral infectivity remains unclear. Herein, we elucidate the crucial role of vimentin, an intermediate filament protein, in regulating NDV infectivity through targeting of the HN protein. Using LC‒MS/MS mass spectrometry and coimmunoprecipitation assays, we identified vimentin as a host protein that differentially interacted with prototypic and mutant HN proteins. Further analysis revealed that the variant NDV strain induced more significant rearrangement of vimentin fibres compared to the prototypic NDV strain and showed an interdependence between vimentin rearrangement and virus replication. Notably, these mutual influences were pronounced in HD11 chicken macrophages. Moreover, vimentin was required for multiple infection processes of the variant NDV strain in HD11 cells, including viral internalization, fusion, and release, while it was not necessary for those of the prototypic NDV strain. Collectively, these findings underscore the pivotal role of vimentin in NDV infection through targeting of the HN protein, providing novel targets for antiviral treatment strategies for NDV.


Assuntos
Doença de Newcastle , Vírus da Doença de Newcastle , Animais , Vírus da Doença de Newcastle/fisiologia , Proteína HN/genética , Vimentina/genética , Cromatografia Líquida/veterinária , Espectrometria de Massas em Tandem/veterinária , Galinhas
12.
Nat Commun ; 14(1): 6132, 2023 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-37783727

RESUMO

Cyclic GMP-AMP synthase (cGAS) is an essential sensor of aberrant cytosolic DNA for initiating innate immunity upon invading pathogens and cellular stress, which is considered as a potential drug target for autoimmune and autoinflammatory diseases. Here, we report the discovery of a class of cyclopeptide inhibitors of cGAS identified by an in vitro screening assay from a focused library of cyclic peptides. These cyclopeptides specifically bind to the DNA binding site of cGAS and block the binding of dsDNA with cGAS, subsequently inhibit dsDNA-induced liquid phase condensation and activation of cGAS. The specificity and potency of one optimal lead XQ2B were characterized in cellular assays. Concordantly, XQ2B inhibited herpes simplex virus-1 (HSV-1)-induced antiviral immune responses and enhanced HSV-1 infection in vitro and in vivo. Furthermore, XQ2B significantly suppressed the elevated levels of type I interferon and proinflammatory cytokines in primary macrophages from Trex1-/- mice and systemic inflammation in Trex1-/- mice. XQ2B represents the specific cGAS inhibitor targeting protein-DNA interaction and phase separation and serves as a scaffold for the development of therapies in the treatment of cGAS-dependent inflammatory diseases.


Assuntos
DNA , Peptídeos Cíclicos , Animais , Camundongos , Peptídeos Cíclicos/farmacologia , DNA/metabolismo , Nucleotidiltransferases/metabolismo , Imunidade Inata , Citocinas
13.
J Integr Plant Biol ; 65(12): 2619-2630, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37837251

RESUMO

Reconstructing a robust species phylogeny and disentangling the evolutionary and biogeographic history of the gymnosperm genus Ephedra, which has a large genome and rich polyploids, remain a big challenge. Here we reconstructed a transcriptome-based phylogeny of 19 diploid Ephedra species, and explored evolutionary reticulations in this genus represented by 50 diploid and polyploid species, using four low-copy nuclear and nine plastid genes. The diploid species phylogeny indicates that the Mediterranean species diverged first, and the remaining species split into three clades, including the American species (Clade A), E. rhytidosperma, and all other Asian species (Clade B). The single-gene trees placed E. rhytidosperma sister to Clade A, Clade B, or Clades A + B in similar proportions, suggesting that radiation and gene flow likely occurred in the early evolution of Ephedra. In addition, reticulate evolution occurred not only among the deep nodes, but also in the recently evolved South American species, which further caused difficulty in phylogenetic reconstruction. Moreover, we found that allopolyploid speciation was pervasive in Ephedra. Our study also suggests that Ephedra very likely originated in the Tethys coast during the late Cretaceous, and the South American Ephedra species have a single origin by dispersal from Mexico or North America.


Assuntos
Ephedra , Filogenia , Ephedra/genética , Diploide , Plastídeos
14.
Virulence ; 14(1): 2250065, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37635408

RESUMO

Clade 2.3.4.4 H5N6 avian influenza virus (AIV) has been predominant in poultry in China, and the circulating haemagglutinin (HA) gene has changed from clade 2.3.4.4h to clade 2.3.4.4b in recent years. In 2021, we isolated four H5N6 viruses from ducks during the routine surveillance of AIV in China. The whole-genome sequencing results demonstrated that the four isolates all belonged to the currently prevalent clade 2.3.4.4b but had different internal gene constellations, which could be divided into G1 and G2 genotypes. Specifically, G1 possessed H9-like PB2 and PB1 genes on the H5-like genetic backbone while G2 owned an H3-like PB1 gene and the H5-like remaining internal genes. By determining the characteristics of H5N6 viruses, including growth performance on different cells, plaque-formation ability, virus attachment ability, and pathogenicity and transmission in different animal models, we found that G1 strains were more conducive to replication in mammalian cells (MDCK and A549) and BALB/c mice than G2 strains. However, G2 strains were more advantageously replicated in avian cells (CEF and DF-1) and slightly more transmissible in waterfowls (mallards) than G1 strains. This study enriched the epidemiological data of H5 subtype AIV to further understand its dynamic evolution, and laid the foundation for further research on the mechanism of low pathogenic AIV internal genes in generating novel H5 subtype reassortants.


Assuntos
Patos , Vírus da Influenza A , Animais , Camundongos , Virulência/genética , China/epidemiologia , Genótipo , Vírus da Influenza A/genética , Camundongos Endogâmicos BALB C , Mamíferos
15.
Emerg Microbes Infect ; 12(2): 2249558, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37585307

RESUMO

H9N2 avian influenza viruses (AIVs) pose an increasing threat to the poultry industry worldwide and have pandemic potential. Vaccination has been principal prevention strategy to control H9N2 in China since 1998, but vaccine effectiveness is persistently challenged by the emergence of the genetic and/or antigenic variants. Here, we analysed the genetic and antigenic characteristics of H9N2 viruses in China, including 70 HA sequences of H9N2 isolates from poultry, 7358 from online databases during 2010-2020, and 15 from the early reference strains. Bayesian analyses based on hemagglutinin (HA) gene revealed that a new designated clade16 emerged in April 2012, and was prevalent and co-circulated with clade 15 since 2013 in China. Clade 16 viruses exhibited decreased cross-reactivity with those from clade 15. Antigenic Cartography analyses showed represent strains were classified into three antigenic groups named as Group1, Group2 and Group3, and most of the strains in Group 3 (15/17, 88.2%) were from Clade 16 while most of the strains in Group2 (26/29, 89.7%) were from Clade 15. The mean distance between Group 3 and Group 2 was 4.079 (95%CI 3.605-4.554), revealing that major switches to antigenic properties were observed over the emergence of clade 16. Genetic analysis indicated that 11 coevolving amino acid substitutions primarily at antigenic sites were associated with the antigenic differences between clade 15 and clade 16. These data highlight complexities of the genetic evolution and provide a framework for the genetic basis and antigenic characterization of emerging clade 16 of H9N2 subtype avian influenza virus.


Assuntos
Vírus da Influenza A Subtipo H9N2 , Influenza Aviária , Animais , Influenza Aviária/epidemiologia , Hemaglutininas/genética , Deriva e Deslocamento Antigênicos , Teorema de Bayes , Galinhas , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Aves Domésticas , China/epidemiologia , Filogenia
16.
Emerg Microbes Infect ; 12(2): 2246582, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37550992

RESUMO

Vaccination is a crucial prevention and control measure against H9N2 avian influenza viruses (AIVs) that threaten poultry production and public health. However, H9N2 AIVs in China undergo continuous antigenic drift of hemagglutinin (HA) under antibody pressure, leading to the emergence of immune escape variants. In this study, we investigated the molecular basis of the current widespread antigenic drift of H9N2 AIVs. Specifically, the most prevalent h9.4.2.5-lineage in China was divided into two antigenic branches based on monoclonal antibody (mAb) hemagglutination inhibition (HI) profiling analysis, and 12 antibody escape residues were identified as molecular markers of these two branches. The 12 escape residues were mapped to antigenic sites A, B, and E (H3 was used as the reference). Among these, eight residues primarily increased 3`SLN preference and contributed to antigenicity drift, and four of the eight residues at sites A and B were positively selected. Moreover, the analysis of H9N2 strains over time and space has revealed the emergence of a new antigenic branch in China since 2015, which has replaced the previous branch. However, the old antigenic branch recirculated to several regions after 2018. Collectively, this study provides a theoretical basis for understanding the molecular mechanisms of antigenic drift and for developing vaccine candidates that contest with the current antigenicity of H9N2 AIVs.


Assuntos
Vírus da Influenza A Subtipo H9N2 , Influenza Aviária , Animais , Humanos , Hemaglutininas , Vírus da Influenza A Subtipo H9N2/genética , Epitopos Imunodominantes , Antígenos Virais/genética , Deriva e Deslocamento Antigênicos , Galinhas , Anticorpos , China , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética
17.
Vet Q ; 43(1): 1-14, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37357919

RESUMO

Influenza A virus is a negative-sense single-stranded RNA virus that belongs to Orthomyxoviridae family. Based on the antigenic characteristics of hemagglutinin (HA) and neuraminidase (NA) influenza viruses are classified into multiple subtypes. H9N2 belongs to the low pathogenic Avian Influenza Viruses (AIVs) and is one of the widely spread viruses in poultry, which can pose a threat to humans by directly infecting or providing internal genes for various zoonotic avian influenza strains. It has the potential to directly or indirectly participate in becoming an AIV that causes a human pandemic. When the virus enters a host, the innate immune system is activated first by pattern recognition receptors. The cytokines produced at the site of infection recruit innate immune cells and antigen-presenting cells and those cells subsequently transmit antigenic signals to adaptive immune cells (i.e. B cells and T cells), to trigger specific humoral and cellular immune responses. As a result, humoral and cellular immunity can clear virus and infected cells via antibody-mediated neutralization and cytotoxicity, respectively. Understanding how chicken immune systems respond to H9N2 is a top priority for effectively controlling the virus's spread and designing vaccines. In this review, we comprehensively discuss the role of the chicken immune system in defending against H9N2, and clarify the current limitations in understanding chicken immune responses to H9N2 virus, thereby providing potential directions for future research as research on the chicken respiratory mucosal immune system has been stagnant for more than 20 years especially on how the mucosal immune system in chicken responds to avian influenza.


Assuntos
Vírus da Influenza A Subtipo H9N2 , Influenza Aviária , Animais , Humanos , Galinhas , Vírus da Influenza A Subtipo H9N2/genética , Aves Domésticas , Sistema Imunitário/patologia
18.
Antiviral Res ; 215: 105637, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37196902

RESUMO

Emerging evidence has demonstrated the critical role of long noncoding RNAs (lncRNAs) in regulating gene expression. However, the functional significance and mechanisms underlying influenza A virus (IAV)-host lncRNA interactions are still elusive. Here, we identified a functional lncRNA, LncRNA#61, as a broad anti-IAV factor. LncRNA#61 is highly upregulated by different subtypes of IAV, including human H1N1 virus and avian H5N1 and H7N9 viruses. Furthermore, nuclear-enriched LncRNA#61 can translocate from the nucleus to the cytoplasm soon after IAV infection. Forced LncRNA#61 expression dramatically impedes viral replication of various subtypes of IAV, including human H1N1 virus and avian H3N2/N8, H4N6, H5N1, H6N2/N8, H7N9, H8N4, H10N3, H11N2/N6/N9 viruses. Conversely, abolishing LncRNA#61 expression substantially favored viral replication. More importantly, LncRNA#61 delivered by the lipid nanoparticle (LNP)-encapsulated strategy shows good performance in restraining viral replication in mice. Interestingly, LncRNA#61 is involved in multiple steps of the viral replication cycle, including virus entry, viral RNA synthesis and the virus release period. Mechanistically, the four long ring arms of LncRNA#61 mainly mediate its broad antiviral effect and contribute to its inhibition of viral polymerase activity and nuclear aggregation of key polymerase components. Therefore, we defined LncRNA#61 as a potential broad-spectrum antiviral factor for IAV. Our study further extends our understanding of the stunning and unanticipated biology of lncRNAs as well as their close interaction with IAV, providing valuable clues for developing novel broad anti-IAV therapeutics targeting host lncRNAs.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Virus da Influenza A Subtipo H5N1 , Subtipo H7N9 do Vírus da Influenza A , Influenza Humana , RNA Longo não Codificante , Animais , Humanos , Camundongos , Antivirais/farmacologia , Interações Hospedeiro-Patógeno , Vírus da Influenza A Subtipo H1N1/genética , Vírus da Influenza A Subtipo H3N2/genética , Virus da Influenza A Subtipo H5N1/genética , Subtipo H7N9 do Vírus da Influenza A/genética , RNA Longo não Codificante/genética , RNA Longo não Codificante/farmacologia , Replicação Viral
19.
Artigo em Inglês | MEDLINE | ID: mdl-36981759

RESUMO

The links between built environments (BE) and commute durations have been extensively studied. However, relatively few studies have considered the effects of BEs at different spatial levels within a unified framework, or identified the gendered relationships between BEs and commute durations. Using survey data from 3209 household couples in 97 Chinese cities, this study investigates the effects of neighborhood- and city-level BEs on commute durations and the potential differences in these effects between the male and female members of the same household couple. A multi-group generalized multilevel structural equation model is applied to reveal the gendered relationships between neighborhood- and city-level BEs and commute durations. The findings suggest that the BE variables at two levels have significant effects on the commute duration. The mediating roles that the traffic congestion, car ownership, and commuting modes play in linking these BEs and commute durations are confirmed. Both levels of the BE variables are more influential factors for males' commuting durations. These findings have policy implications for the design of gender-equal transportation systems.


Assuntos
Ambiente Construído , Meios de Transporte , Masculino , Humanos , Feminino , Cidades , Inquéritos e Questionários
20.
Appl Microbiol Biotechnol ; 107(7-8): 2437-2450, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36820898

RESUMO

Nucleoprotein (NP) functions crucially in the replicative cycle of influenza A virus (IAV) via forming the ribonucleoprotein complex together with PB2, PB1, and PA proteins. As its high conservation, NP ranks one of the hot targets for design of universal diagnostic reagents and antiviral drugs for IAV. Here, we report an anti-NP murine monoclonal antibody (mAb) 5F10 prepared from traditional lymphocyte hybridoma technique with the immunogen of a clade 2.3.4.4 H5N1 subtype avian influenza virus. The specificity of mAb 5F10 to NP protein was confirmed by immunofluorescence assay and western blotting, and the mAb 5F10 could be used in immunoprecipitation and immunohistochemistry assays. Importantly, mAb 5F10 possessed broad-spectrum reactivity against H1~H11 subtypes of avian influenza viruses, including various HA clades of H5Nx subtype. In addition, mAb 5F10 also showed good affinity with H1N1 and H3N2 subtype influenza viruses of swine and human origin. Furthermore, the recognized antigenic epitope of mAb 5F10 was identified to consist of the conserved amino acid motif 81EHPSA85 in the second flexible loop region of NP protein through screening the phage display peptide library. Collectively, the mAb 5F10 which recognizes the novel universal NP linear B-cell epitope of IAV with diverse origins and subtypes will be a powerful tool for NP protein-based structural, functional, and mechanistic studies, as well as the development of detection methods and universal vaccines for IAV. KEY POINTS: • A broad-spectrum mAb against various subtypes and sources of IAV was developed • The mAb possessed good reactivity in IFA, western blot, IP, and IHC assays • The mAb targeted a novel conserved linear B-cell epitope involving 81EHPSA85 on NP protein.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Virus da Influenza A Subtipo H5N1 , Vírus da Influenza A , Influenza Humana , Animais , Humanos , Camundongos , Suínos , Anticorpos Monoclonais , Nucleoproteínas , Epitopos de Linfócito B , Vírus da Influenza A Subtipo H3N2 , Anticorpos Antivirais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...